

CrossVA documentation

Custom Mappings

	Configuration Files

Under the hood

	transform function

	configuration module

	validation module

	mappings module

pyCrossVA

[image: _images/pycrossva.svg]
 [https://badge.fury.io/py/pycrossva][image: _images/0901a9756c9248242adcaf22e94fa50a1f1414fd.svg]
 [http://pycrossva.readthedocs.io/][image: _images/d1b842ik4c95x47h.svg]
 [https://ci.appveyor.com/project/jarathomas/pycrossva]
Simple Usage - Python

The simplest way to get started with CrossVA is to invoke the transform function
with a default mapping, and the path to a csv containing your raw verbal autopsy
data.

from pycrossva.transform import transform

transform(("2016WHOv151", "InterVA4"), "path/to/data.csv")

You can also call the transform function on a Pandas DataFrame, if you wanted to
read in and process the data before calling the function.

from pycrossva.transform import transform

input_data = pd.read_csv("path/to/data.csv")
input_data = some_special_function(input_data)
final_data = transform(("2016WHOv151", "InterVA4"), input_data)

The transform function returns a Pandas DataFrame object. To write the Pandas DataFrame
to a csv, you can do:

final_data.to_csv("filename.csv")

pyCrossVA is a python package for transforming verbal autopsy data collected using
the 2016 WHO VA instrument (v1.5.1, or v1.4.1), 2012 WHO VA instrument, and
the PHRMC short questionnaire into a format suitable for openVA.

The flagship function of this package is the transform() function, which
prepares raw data for use in a verbal autopsy algorithm. The user can either
choose to use a default mapping, or create a custom one of their own design. The
default mappings are listed in Currently Supported and can be invoked by
passing in a tuple as the mapping argument in ("input", "output") format.

Command Line

pycrossva also contains a command line tool, pycrossva-transform that acts as
a wrapper for the transform python function in the pycrossva
package. Once you have installed pycrossva, you can run this from the command
line in order to process verbal autopsy data without having to touch python code.
If you have multiple input files to process from the same input type (or source format) to the same
output type (or algorithm), you can run them all in a single command.

If no destination (–dst) is specified, the default behavior will be to write
the resulting data to a csv in the current working directory with a name in
the pattern of “output_type_from_src_mmddyy”, where mmddyy is the current
date. If dst is a directory, then the result file will still have the
default name. If dst ends in ‘.csv’ but multiple input files are given,
then the output files will be written to dst_1.csv, dst_2.csv, etc.

	pycrossva-transform takes 3 positional arguments:

	
	input_type: source type of the input data (the special input type of ‘AUTODETECT’ specifies that the type should be detected automatically if possible)

	output_type: format of output data (which algorithm the data should be prepared for)

	src: filepath to the input data - can take multiple arguments, separated by a space

Examples:

$ pycrossva-transform 2012WHO InterVA4 path/to/mydata.csv
2012WHO 'path/to/my/data.csv' data prepared for InterVA4 and written to csv at 'my/current/directory/InterVA4_from_mydata_042319.csv'

$ pycrossva-transform 2012WHO InterVA4 path/to/mydata1.csv path/to/another/data2.csv --dst outputfolder
2012WHO 'path/to/mydata1.csv' data prepared for InterVA4 and written to csv at 'outputfolder/InterVA4_from_mydata1_042319.csv'
2012WHO 'path/to/another/data2.csv' data prepared for InterVA4 and written to csv at 'outputfolder/InterVA4_from_data2_042319.csv'

$ pycrossva-transform 2012WHO InterVA4 path/to/mydata1.csv path/to/another/data2.csv --dst outputfolder/results.csv
2012WHO 'path/to/mydata1.csv' data prepared for InterVA4 and written to csv at 'outputfolder/results_1.csv'
2012WHO 'path/to/another/data2.csv' data prepared for InterVA4 and written to csv at 'outputfolder/results_2.csv'

$ pycrossva-transform AUTODETECT InterVA4 path/to/mydata.csv
Detected input type: 2012WHO
2012WHO 'path/to/my/data.csv' data prepared for InterVA4 and written to csv at 'my/current/directory/InterVA4_from_mydata_042319.csv'

Running Tests

To run unit tests, first make sure all requirements are installed

pip install -r requirements.txt

Also make sure that pytest is installed

pip install pytest

Finally, run the tests

python setup.py install && cd pycrossva && python -m pytest –doctest-modules

Currently Supported

Inputs

	2021 WHO Questionnaire from ODK export

	2016 WHO Questionnaire from ODK export, v1.5.1

	2016 WHO Questionnaire from ODK export, v1.4.1

	2012 WHO Questionnaire from ODK export

	PHRMC Shortened Questionnaire

Outputs

	InSilicoVA

	InterVA4

	InterVA5

Roadmap

This is an alpha version of package functionality, with only limited support.

Expanding outputs

One component of moving to a production version will be to offer additional
mapping files to support more output formats. The package currently supports
mapping to the InterVA4 and InSilicoVA format.

The following is a list of
additional outputs for other algorithms to be supported in future versions:

	Tariff

	Tariff 2.0

Style

This package was written using google style guide for Python and PEP8 standards.
Tests have been written using doctest.

Background

About Verbal Autopsy

From Wikipedia [https://en.wikipedia.org/wiki/Verbal_autopsy]:

A verbal autopsy (VA) is a method of gathering health information about a deceased
individual to determine his or her cause of death. Health information and a
description of events prior to death are acquired from conversations or
interviews with a person or persons familiar with the deceased and analyzed by
health professional or computer algorithms to assign a probable cause of death.

Verbal autopsy is used in settings where most deaths are undocumented. Estimates
suggest a majority of the 60 million annual global deaths occur without medical
attention or official medical certification of the cause of death. The VA method
attempts to establish causes of death for previously undocumented subjects,
allowing scientists to analyze disease patterns and direct public health policy
decisions.

Noteworthy uses of the verbal autopsy method include the Million Death Study in
India, China’s national program to document causes of death in rural areas, and
the Global Burden of Disease Study 2010.

License

This package is licensed under the GNU GENERAL PUBLIC LICENSE (v3, 2007).
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Indices and tables

	Index

	Module Index

	Search Page

Configuration Files

CrossVA runs by applying the specified mappings in its configuration files to
the raw data provided. The package comes with some default configurations
which map common inputs to common outputs, but it is possible to create your
own customized version.

These files must have the following columns:

	New Column Name

	New Column Documentation

	Source Column ID

	Source Column Documentation

	Relationship

	Condition

	Prerequisite

Of those, only New Column Name, Source Column ID, Relationship, and
Condition must be filled out in every row.

Each row in the configuration mapping gives instructions to map information from
a single column in the raw input data to a new column in the final transformed
data.

Each row can be read as roughly:
The new column New Column Name will get the value True in rows where the column
Source Column ID in the input data is Relationship to Condition,
and, optionally, the Prerequisite column in the output data is also True.

When the input data is NA, the NAs will be preserved through the transformation.
That is, no matter the Relationship and Condition, if the value in the source
column is NA, then the result will be NA, instead of a boolean.

Note

If the same column name has multiple conditions specified, then each operation
will only update the pre-existing column. False and NA values in the
transformed data will be overwritten if a prior condition was false, but a new
condition was true.

This creates an implicit OR relationship between the different conditions
listed.

Structure of Mapping Configuration table

	New Column Name

	New Column Documentation

	Source Column ID

	Source Column Documentation

	Relationship

	Condition

	Prerequisite

	DEL_ELSE

	Did she give birth elsewhere, e.g. on the way to a facility?

	Id10337

	(Id10337) Where did she give birth?

	eq

	other

	

	DEL_ELSE

	Did she give birth elsewhere, e.g. on the way to a facility?

	Id10337

	(Id10337) Where did she give birth?

	eq

	on_route_to_hospital_or_facility

	

	The first row indicates that where the column ‘Id10337’ is equal to other in the input data,
then ‘DEL_ELSE’ is true in the output data.

	The first row indicates that where the column ‘Id10337’ is equal to
‘on_route_to_hospital_or_facility’ in the input data,
then DEL_ELSE is true in the output data.

In this sense, if ‘Id10337’ is ‘on_route_to_hospital_or_facility’, ‘DEL_ELSE’ will be set
to False on the first condition, and then updated to True on the second condition.
However, if ‘Id10337’ is other, then ‘DEL_ELSE’ will be set to True on the first
condition, and remain True (not updated) on the second condition, regardless of
the value in the input data, since a condition for the new column has already
been satisfied.

New Column Name

The New Column Name column should contain the name of the
new column to be created in the final data. All of the columns required by the
intended algorithm should be listed, with corresponding documentation in the
New Column Documentation column if possible.

New Column Documentation

The New Column Documentation column should contain a brief statement
explaining what the new column is meant to represent.

Source Column ID

The Source Column ID column should contain the unique
identifier at the end of the column name in the input data. It should only be
left blank in cases where the New Column being created (and required by the intended algorithm)
depends on information that is unavailable in the source data, and thus there is
no relevant source column.

Source Column Documentation

The Source Column Documentation column should contain a
brief statement explaining what information the source column contains. This,
along with the New Column Documentation column, makes it much easier to
at-a-glance check the logic behind these mappings.

Relationship

The Relationship column should contain one of 8 valid
relationships, which use the value in the Condition column to return a
boolean value for the output data. The currently supported relationships are:

	eq: is equal to

	gt: is greater than

	ge: is greater than or equal to

	lt: is less than

	le: is less than or equal to

	ne: is not equal to

	contains: contains the substring

	between: is between 2 numbers, inclusive

Condition

The Condition column should contain the condition being applied to the
source column. For example, yes, 5 or 15 to 30.

Note

Conditions in the form ## to ## should only be used when the relationship is
between, in order to give the two numbers that make up the low and high end
of the acceptable range.

Prerequisite

The Prerequisite column is optional. It should be left blank if there is
no prerequisite. If there is a prerequisite condition, then this column should
contain the name of the column in the final data to reference.

For example, the new column MAGEGP1 is created based on the condition of if
the source column ageInYears is between 12 to 19. It also lists a prerequisite
of FEMALE, which is a previously created column in the output data,
containing its own boolean, which checks to see if Id10019 is equal to “female”.

transform module

Defines main CrossVA function, transform which maps raw VA data into data
for use with a VA algorithm in OpenVA.

	
transform.transform(mapping, raw_data, raw_data_id=None, verbose=2, preserve_na=True, result_values={'Absent': 'n', 'NA': '.', 'Present': 'y'})

	transforms raw VA data (raw_data) into data suitable for use with a VA
algorithm, according to the specified transformations given in mapping.

	Parameters

	
	mapping (string, tuple or Pandas DataFrame) – Should be either a tuple
in form (input, output), a path to csv containing a configuration
data file, or a Pandas DataFrame containing configuration data

	raw_data (string or Pandas DataFrame) – raw verbal autopsy data to
process

	raw_data_id (string) – column name with record ID

	verbose (int) – integer from 0 to 5, controlling how much status detail
is printed to console. Silent if 0. Defaults to 2, which will print
only errors and warnings.

	preserve_na (bool) – whether to preserve NAs in data, or to count them
as FALSE. Overridden with True for InSilicoVA, False for InterVA4
when mapping is given as a tuple. Defaults to TRUE, which allows
NA values to perpetuate through the data.

	result_values (dict) – available as a simple customization option if
user would like values indicating presence, absence, and NAs to
be mapped to certain values.

	Returns

	the raw data transformed according to specifications
given in mapping data. Default values are y where symptom is present,
n where symptom is absent, and if . are preserved, they are represented
in the data as NaNs. If NAs are not preserved, they are considered to be
false / absent / 0.

	Return type

	Pandas DataFrame

Examples

You can specify the mapping as (‘input’, ‘output’) and the path to csv
as a string:

>>> transform(("2016WHOv151", "InterVA4"), "resources/sample_data/2016WHO_mock_data_1.csv").loc[range(5),["ACUTE","CHRONIC","TUBER"]]
 ACUTE CHRONIC TUBER
0 y n .
1 y n .
2 n y .
3 n y .
4 y n .

You can also give the data and mapping as Pandas DataFrames:

>>> my_special_data = pd.read_csv("resources/sample_data/2016WHO_mock_data_1.csv")
>>> my_special_mapping = pd.read_csv("resources/mapping_configuration_files/2016WHOv151_to_InSilicoVA.csv")
>>> transform(my_special_mapping, my_special_data).loc[range(5),["ACUTE","CHRONIC","TUBER"]]
 ACUTE CHRONIC TUBER
0 y n .
1 y n .
2 n y .
3 n y .
4 y n .

Note that by default, preserve_na is True and NA values will be
left in. If preserve_na is False, or if the algorithm does not
preserve NAs, then NA values will be filled in as 0’s, as they are in
the first InterVA4 example above.

The user can also pass in a different mapping dictionary for
result_values to change the values from their defaults of
0 (False / Absent), 1 (True / Present), and NaN
(No data / missing), if they need their results in a different format.

>>> transform(("2016WHOv151", "InterVA4"), "resources/sample_data/2016WHO_mock_data_1.csv", result_values={"Absent":"A","Present":"P","NA":"Missing"}).loc[range(5),["ACUTE","CHRONIC","TUBER"]]
 ACUTE CHRONIC TUBER
0 P A Missing
1 P A Missing
2 A P Missing
3 A P Missing
4 P A Missing

The mapping-data relationship is designed to be as flexible as possible,
while still emphasizing tracebility and alerting the user to data
integrity issues.

Not every source column in the mapping needs to be
represented in the data. If source columns are missing in the source data,
then those columns will be created and filled with NA values.

>>> transform(("2016WHOv151", "InSilicoVA"), "resources/sample_data/2016WHO_mock_data_2.csv").loc[range(5),["ACUTE","FEMALE","MARRIED"]]
Validating Mapping-Data Relationship . . .
<BLANKLINE>
 WARNINGS
[?] 3 (1.3%) expected source column IDs listed in mapping file ('-ageInDaysNeonate', '-Id10019', and '-Id10059') were not found in the input data columns. Their values will be NA.
[?] '-Id10019' is missing, which affects the creation of column(s) 'FEMALE', and 'MALE'
[?] '-Id10059' is missing, which affects the creation of column(s) 'MARRIED'
[?] '-ageInDaysNeonate' is missing, which affects the creation of column(s) 'DIED_D1', 'DIED_D23', 'DIED_D36', 'DIED_W1', and 'NEONATE'
 ACUTE FEMALE MARRIED
0 y . .
1 y . .
2 y . .
3 y . .
4 y . .

transform will also accept mapping configurations with missing values,
with new columns that are specified but missing source columns.
These new columns will be created so that the final result has the correct
expeted columns for the algorithm, but filled with NA values to indicate
the lack of information. If preserve_na is set to False, then the NA
values will also be False.

This situation is common between certain questionnaire sources and algorithms.
For example, in the mapping between the PHRMC Short questionnaire
to InterVA5 mapping, there are 107 InterVA5
variables that are listed in the mapping configuration to be created,
but have no corresponding question in PHRMC short.

For example, variables i004a and i004b have no specifications in the
mapping below. They are still listed under “New Column Name” so
CrossVA knows that they should be created in the final result, but
because they have no logic defined, they will be left as their default
value of NA.

>>> phrmc_to_interva5 = pd.read_csv('resources/mapping_configuration_files/PHRMCShort_to_InterVA5.csv')
>>> phrmc_to_interva5.iloc[:5,[0,2,4,-1]]
 New Column Name Source Column ID Relationship Meta: Notes
0 i004a NaN NaN Not asked
1 i004b NaN NaN Not asked
2 i019a gen_5_2 eq NaN
3 i019b gen_5_2 eq NaN
4 i022a gen_5_4h ge NaN

The transform function will warn the user of this behavior.

>>> transform(phrmc_to_interva5, "resources/sample_data/PHRMC_mock_data_1.csv").iloc[:5,:5]
Validating Mapping Configuration . . .
<BLANKLINE>
 WARNINGS
[?] 124 new column(s) listed but not defined in Mapping Configuration detected. These ('i004a', 'i004b', 'i059o', 'i082o', 'i087o', 'i091o', 'i092o', 'i093o', 'i094o', 'i095o', etc) will be treated as NA.
Validating Mapping-Data Relationship . . .
<BLANKLINE>
 WARNINGS
[?] 9 (5.7%) expected source column IDs listed in mapping file ('child_6_2', 'child_4_4', 'child_4_20', 'child_4_7a', 'child_4_40', 'child_4_28', 'child_4_30', 'child_1_5a', and 'child_5_1') were not found in the input data columns. Their values will be NA.
[?] 'child_1_5a' is missing, which affects the creation of column(s) 'i358a'
[?] 'child_4_20' is missing, which affects the creation of column(s) 'i171o'
[?] 'child_4_28' is missing, which affects the creation of column(s) 'i208o'
[?] 'child_4_30' is missing, which affects the creation of column(s) 'i233o'
[?] 'child_4_4' is missing, which affects the creation of column(s) 'i150a'
[?] 'child_4_40' is missing, which affects the creation of column(s) 'i200o'
[?] 'child_4_7a' is missing, which affects the creation of column(s) 'i183o'
[?] 'child_5_1' is missing, which affects the creation of column(s) 'i418o'
[?] 'child_6_2' is missing, which affects the creation of column(s) 'i130o'
 ID i004a i004b i019a i019b
0 1 . . y n
1 2 . . n n
2 3 . . n n
3 4 . . y n
4 5 . . n n

However, the mapping-data relationship must be valid. For example, if
the source column IDs are not unique for the input data - that is,
if multiple columns in the input data contain the same source ID - then
validation will fail.

For example, bad_data contains columns named A-Id10004 and B-Id10004,
but the 2016 WHO mapping is looking for just -Id10004 as a source ID.
CrossVA cannot tell which column should be used, so validation fails.

>>> bad_data = pd.read_csv("resources/sample_data/2016WHO_bad_data_1.csv")
>>> transform(("2016WHOv151", "InSilicoVA"), bad_data)
Validating Mapping-Data Relationship . . .
<BLANKLINE>
 ERRORS
[!] 1 source column IDs ('-Id10004') were found multiple times in the input data. Each source column ID should only occur once as part of an input data column name. It should be a unique identifier at the end of an input data column name. Source column IDs are case sensitive. Please revise your mapping configuration or your input data so that this condition is satisfied.

configuration module

Structure for Configuration class

	
class configuration.Configuration(config_data, verbose=1, process_strings=True)

	Bases: object

Configuration class details the relationship between a set of input
data and output data. It is composed of MapConditions that
transform an input data source (2012 WHO, 2016 WHO 141, 2016 WHO 151,
PHRMC SHORT) into a different data form (PHRMC SHORT, InSilicoVA,
InterVA4, InterVA5, or Tarrif2) for verbal autopsy.

	Variables

	
	given_columns (Pandas Series) – columns of mapping dataframe.

	required_columns (Pandas Series) – required columns in mapping data.

	main_columns (list) – the four main columns required in config_data.

	valid_relationships (Pandas Series) – contains list of valid
relationships to use in comparisons. Relationships should be an
attr of Pandas Series object, or be defined as a subclass of
MapCondition.

	config_data (Pandas DataFrame) – dataframe containing mapping
relationships written out.

	given_prereq (Pandas Series) – lists pre-requisites referenced in config
data.

	new_columns (Pandas Series) – lists the new columns to be created with
config data.

	source_columns (Pandas Series) – lists the source columns required in
the raw input data.

	verbose (int) – controls default verbosity of printing to console.

	process_strings (boolean) – whether or not to remove whitespace and
non-alphanumeric characters from strings in condition field and in
raw_data during mapping.

	validation (Validation) – a validation object containing the validation
checks made

	
describe()

	Prints the mapping relationships in the Configuration object to
console.

	Parameters

	None –

	Returns

	None

Examples

>>> MAP_PATH = "resources/mapping_configuration_files/"
>>> EX_MAP_1 = pd.read_csv(MAP_PATH + "example_config_1.csv")
>>> Configuration(EX_MAP_1).describe()
MAPPING STATS
<BLANKLINE>
 - 16 new columns produced ('AB_POSIT', 'AB_SIZE', 'AC_BRL', 'AC_CONV', 'AC_COUGH', etc)
 - 12 source columns required ('Id10403', 'Id10362', 'Id10169', 'Id10221', 'Id10154', etc)
 - 7 relationships invoked ('eq', 'lt', 'between', 'ge', 'contains', etc)
 - 13 conditions listed ('yes', '14', '10', '21', '15 to 49', etc)
 - 1 prerequisites checked ('FEMALE')

	
list_conditions()

	Lists the final mapping conditions contained in Configuration object

	Returns

	list of MapConditions, where each MapConditions is
created from a row of processed mapping data.

	Return type

	list

Examples

>>> MAP_PATH = "resources/mapping_configuration_files/"
>>> EX_MAP_1 = pd.read_csv(MAP_PATH + "example_config_1.csv")
>>> c = Configuration(EX_MAP_1)
>>> c.list_conditions()[:5]
[<StrMapCondition: AB_POSIT = [column Id10403].eq(yes)>,
 <StrMapCondition: AB_SIZE = [column Id10362].eq(yes)>,
 <NumMapCondition: AC_BRL = [column Id10169].lt(14.0)>,
 <NumMapCondition: AC_CONV = [column Id10221].lt(10.0)>,
 <NumMapCondition: AC_COUGH = [column Id10154].lt(21.0)>]

	
main_columns = ['New Column Name', 'Source Column ID', 'Relationship', 'Condition']

	

	
required_columns = 0 New Column Name 1 New Column Documentation 2 Source Column ID 3 Source Column Documentation 4 Relationship 5 Condition 6 Prerequisite Name: expected columns, dtype: object

	

	
valid_relationships = 0 gt 1 ge 2 lt 3 le 4 between 5 eq 6 ne 7 contains Name: valid relationships, dtype: object

	

	
validate(verbose=None)

	Prepares and validates the Configuration object’s mapping conditions.
Validation fails if there are any inoperable errors. Problems that can
be fixed in place are processed and flagged as warnings.

	Parameters

	verbose (int) – controls print output, should be in range 0-5,
each higher level includes the messages of each level below it.
Where verbose = 0, nothing will be printed to console.
Where verbose = 1, print only errors to console,
where verbose = 2, also print warnings,
where verbose = 3, also print suggestions and status checks,
where verbose = 4, also print passing validation checks,
where verbose = 5, also print description of configuration
conditions.
Defaults to None; if none, replace with self.verbose attribute

	Returns

	
	boolean representing whether there are any errors that

	prevent validation

	Return type

	Boolean

Examples

>>> MAP_PATH = "resources/mapping_configuration_files/"
>>> EX_MAP_2 = pd.read_csv(MAP_PATH + "example_config_2.csv")
>>> c = Configuration(EX_MAP_2)
>>> c.validate(verbose=4)
Validating Mapping Configuration . . .
<BLANKLINE>
 CHECKS PASSED
[X] All expected columns ('New Column Name', 'New Column Documentation', 'Source Column ID', 'Source Column Documentation', 'Relationship', 'Condition', and 'Prerequisite') accounted for in configuration file.
[X] No leading/trailing spaces column New Column Name detected.
[X] No leading/trailing spaces column Relationship detected.
[X] No leading/trailing spaces column Prerequisite detected.
[X] No leading/trailing spaces column Condition detected.
[X] No whitespace in column Condition detected.
[X] No upper case value(s) in column Relationship detected.
[X] No upper case value(s) in column Condition detected.
[X] No non-alphanumeric value(s) in column Source Column ID detected.
[X] No non-alphanumeric value(s) in column Relationship detected.
[X] No non-alphanumeric value(s) in column Condition detected.
[X] No new column(s) listed but not defined in Mapping Configuration detected.
[X] No NA's in column New Column Name detected.
[X] No NA's in column Source Column ID detected.
<BLANKLINE>
 ERRORS
[!] 3 values in Relationship column were invalid ('eqqqq', 'another fake', and 'gee'). These must be a valid method of pd.Series, e.g. ('gt', 'ge', 'lt', 'le', 'between', 'eq', 'ne', and 'contains') to be valid.
[!] 2 row(s) containing a numerical relationship with non-number condition detected in row(s) #8, and #9.
[!] 2 values in Prerequisite column were invalid ('ABDOMM', and 'Placeholder here'). These must be defined in the 'new column name' column of the config file to be valid.
<BLANKLINE>
 WARNINGS
[?] 2 whitespace in column New Column Name detected in row(s) #6, and #8. Whitespace will be converted to '_'
[?] 1 whitespace in column Relationship detected in row(s) #4. Whitespace will be converted to '_'
[?] 1 whitespace in column Prerequisite detected in row(s) #9. Whitespace will be converted to '_'
[?] 1 non-alphanumeric value(s) in column New Column Name detected in row(s) #6. This text should be alphanumeric. Non-alphanumeric characters will be removed.
[?] 2 duplicate row(s) detected in row(s) #1, and #14. Duplicates will be dropped.
[?] 1 NA's in column Relationship detected in row(s) #3.
[?] 1 NA's in column Condition detected in row(s) #6.
False

	
class configuration.CrossVA(raw_data, mapping_config, na_values=['dk', 'ref', ''], verbose=2)

	Bases: object

Class representing raw VA data, and how to map it to an algorithm

	Variables

	
	mapping (type) – a validated Configuration object that details how to
transform the type of data in raw_data to the desired output.

	data (Pandas DataFrame) – a Pandas DataFrame containing the raw VA data

	prepared_data (Pandas DataFrame) – a Pandas DataFrame containing a
prepared form of the VA data to use with the Configuration object.

	validation (Validation) – Validation object containing the validation
checks that have been made on the raw data and between the raw data
and mapping Configuration.

	verbose (int) – Controls verbosity of printing to console, 0-5 where 0
is silent.

	
process()

	Applies the given configuration object’s mappings to the given raw
data.

Args: None

	Returns

	a dataframe where the transformations specified
have been applied to the raw data, resulting

	Return type

	Pandas DataFrame

	
validate(verbose=None)

	Validates that RawVAData’s raw input data and its mapping
configuration object are compatible and prepares input data for use.

	Parameters

	verbose (int) – int from 0 to 5, representing verbosity of printing
to console. Defaults to None; if None, replaced with
self.verbose attribute.

	Returns

	True if valid, False if not.

	Return type

	boolean

Examples

>>> MAP_PATH = "resources/mapping_configuration_files/"
>>> EX_MAP_1 = pd.read_csv(MAP_PATH + "example_config_1.csv")
>>> EX_DATA_1 = pd.read_csv("resources/sample_data/mock_data_2016WHO151.csv")
>>> CrossVA(EX_DATA_1, Configuration(EX_MAP_1)).validate(verbose=0)
True

validation module

Module containing Validation class, and Vcheck class and its subclasses

	
class validation.Err(message)

	Bases: validation.VCheck

VCheck subclass representing a serious problem in data validation
that prevents validation.

Examples

>>> Err("This is a data validation error").expand()
Tier Error
Bullet [!]
Level 1
Title ERRORS
Message This is a data validation error
dtype: object

	
bullet()

	abstract property, must be overriden.
Should be a str, representing a bullet point

	
level()

	abstract property, must be overriden.
Should be int ,representing VCheck tier

	
tier()

	abstract property, must be overriden.
Should be str, representing name of VCheck tier

	
title()

	abstract property, must be overriden.
Should be str, representing title of VCheck type

	
class validation.Passing(message)

	Bases: validation.VCheck

VCheck subclass representing a passed check in data validation, where
there is no problem.

Examples

>>> Passing("This is a passing data validation check").expand()
Tier Passing
Bullet [X]
Level 4
Title CHECKS PASSED
Message This is a passing data validation check
dtype: object

	
bullet()

	abstract property, must be overriden.
Should be a str, representing a bullet point

	
level()

	abstract property, must be overriden.
Should be int ,representing VCheck tier

	
tier()

	abstract property, must be overriden.
Should be str, representing name of VCheck tier

	
title()

	abstract property, must be overriden.
Should be str, representing title of VCheck type

	
class validation.Suggest(message)

	Bases: validation.VCheck

VCheck subclass representing a minor problem with data that
does not prevent data validation.

Examples

>>> Suggest("This is a data validation suggestion").expand()
Tier Suggestion
Bullet [i]
Level 3
Title SUGGESTIONS
Message This is a data validation suggestion
dtype: object

	
bullet()

	abstract property, must be overriden.
Should be a str, representing a bullet point

	
level()

	abstract property, must be overriden.
Should be int ,representing VCheck tier

	
tier()

	abstract property, must be overriden.
Should be str, representing name of VCheck tier

	
title()

	abstract property, must be overriden.
Should be str, representing title of VCheck type

	
class validation.VCheck(message)

	Bases: object

Abstract class fior a single validation check

	
bullet

	abstract property, must be overriden.
Should be a str, representing a bullet point

	
expand()

	Expands VCheck information as a Pandas Series

	Parameters

	None –

	Returns

	representing VCheck attributes as a Pandas Series

	Return type

	Pandas Series

Examples

>>> Err("Error Message").expand()
Tier Error
Bullet [!]
Level 1
Title ERRORS
Message Error Message
dtype: object

	
level

	abstract property, must be overriden.
Should be int ,representing VCheck tier

	
tier

	abstract property, must be overriden.
Should be str, representing name of VCheck tier

	
title

	abstract property, must be overriden.
Should be str, representing title of VCheck type

	
class validation.Validation(name='')

	Bases: object

Validation object represents an organized dataframe of validation checks

	Variables

	vchecks (Pandas DataFrame) – a dataframe containing the expanded form
of the VCheck instances that have been added.

	
affected_by_absence(missing_grped)

	adds a validation check as Warn describing the items in missing_grped,
which detail the impact that missing columns have on newly created
mappings.

	missing_grped (Pandas Series): series where the index is the name

	of the missing source column, and the values are a list of
affected values.

	Returns:

	None

	
all_valid(given, valid, definition)

	adds a validation check where all values in given must be in valid
to pass. fail_check is Err (fails validation).

	Parameters

	
	given (Pandas Series) – the items representing input given

	valid (Pandas Series) – list of all possible valid items accepted in
given

	definition (str) – string describing what makes an item in given
be in valid

	Returns

	None

Examples

>>> v = Validation()
>>> v.all_valid(pd.Series(["a","b"], name="example input"), pd.Series(["a","b","c"], name="valid value(s)"), "pre-defined")
>>> v.all_valid(pd.Series(["a","b","c"], name="example input"), pd.Series(["a","d"], name="valid value(s)"), "'a' or 'd'")
>>> v.report(verbose=4)
Validating . . .
<BLANKLINE>
 CHECKS PASSED
[X] All values in example input are valid.
<BLANKLINE>
 ERRORS
[!] 2 values in example input were invalid ('b', and 'c').
These must be 'a' or 'd' to be valid.

	
check_na(df)

	Adds a validation check flagging the rows in every column of df
that are None

	Parameters

	df (Pandas DataFrame) – a Pandas DataFrame with columns that should
have no NA values

	Returns

	None

Examples

>>> v = Validation()
>>> test_df = pd.DataFrame({"A":["a","B","c"], "B":["D","e",None]})
>>> v.check_na(test_df)
>>> v.report(verbose=4)
Validating . . .
<BLANKLINE>
 CHECKS PASSED
[X] No NA's in column A detected.
<BLANKLINE>
 WARNINGS
[?] 1 NA's in column B detected in row(s) #2.

	
fix_alnum(df)

	Adds a validation check flagging the rows in every column of df
that contain non-alphanumeric characters. Regex removes all characters
that are not alpha-numeric, but leaves periods that are part of a
number.

	Parameters

	df (Pandas DataFrame) – a Pandas DataFrame with columns that should
have only alphanumeric characters

	Returns

	df where alphanumeric characters are removed

	Return type

	Pandas DataFrame

Examples

>>> v = Validation()
>>> test_df = pd.DataFrame({"A":["a","3.0","c"], "B":["??.test","test<>!",";test_data"]})
>>> v.fix_alnum(test_df)
 A B
0 a test
1 3.0 test
2 c test_data
>>> v.report(verbose=4)
Validating . . .
<BLANKLINE>
 CHECKS PASSED
[X] No non-alphanumeric value(s) in column A detected.
<BLANKLINE>
 WARNINGS
[?] 3 non-alphanumeric value(s) in column B detected in row(s)
#0, #1, and #2. This text should be alphanumeric. Non-alphanumeric
characters will be removed.

	
fix_lowcase(df)

	Adds a validation check flagging the rows in every column of df
that contain lowercase characters.

	Parameters

	df (Pandas DataFrame) – a Pandas DataFrame with columns that should
have only uppercase characters

	Returns

	df where all characters are uppercase

	Return type

	Pandas DataFrame

Examples

>>> v = Validation()
>>> test_df = pd.DataFrame({"A":["a","B","c"], "B":["D","e","F"]})
>>> v.fix_lowcase(test_df)
 A B
0 A D
1 B E
2 C F
>>> v.report(verbose=4)
Validating . . .
<BLANKLINE>
 WARNINGS
[?] 2 lower case value(s) in column A detected in row(s) #0,
and #2. Convention to have this text be uppercase. Lower case text
will be made uppercase.
[?] 1 lower case value(s) in column B detected in row(s) #1.
Convention to have this text be uppercase. Lower case text will be
made uppercase.

	
fix_upcase(df)

	Adds a validation check flagging the rows in every column of df
that contain uppercase characters

	Parameters

	df (Pandas DataFrame) – a Pandas DataFrame with columns that should
have only lowercase characters

	Returns

	df where all characters are lowercase

	Return type

	Pandas DataFrame

Examples

>>> v = Validation()
>>> test_df = pd.DataFrame({"A":["a","B","c"], "B":["D","e","F"]})
>>> v.fix_upcase(test_df)
 A B
0 a d
1 b e
2 c f
>>> v.report(verbose=4)
Validating . . .
<BLANKLINE>
 WARNINGS
[?] 1 upper case value(s) in column A detected in row(s) #1.
Convention is to have this text be lowercase. Upper case text will
be made lowercase.
[?] 2 upper case value(s) in column B detected in row(s) #0,
and #2. Convention is to have this text be lowercase. Upper case
text will be made lowercase.

	
fix_whitespace(df)

	Adds a validation check flagging the rows in every column of df
that contain whitespace

	Parameters

	df (Pandas DataFrame) – a Pandas DataFrame with columns that should
have no whitespace

	Returns

	
	df where whitespace is replaced with an

	underscore

	Return type

	Pandas DataFrame

Examples

>>> v = Validation()
>>> test_df = pd.DataFrame({"A":["a"," B ","Test Data"], "B":["D"," e","F "]})
>>> v.fix_whitespace(test_df)
 A B
0 a D
1 B e
2 Test_Data F
>>> v.report(verbose=4)
Validating . . .
<BLANKLINE>
 CHECKS PASSED
[X] No whitespace in column B detected.
<BLANKLINE>
 WARNINGS
[?] 1 leading/trailing spaces column A detected in row(s) #1. Leading/trailing spaces will be removed.
[?] 2 leading/trailing spaces column B detected in row(s) #1, and #2. Leading/trailing spaces will be removed.
[?] 1 whitespace in column A detected in row(s) #2. Whitespace will be converted to '_'

	
flag_elements(flag_where, flag_elements, criteria)

	Adds a validation check seeing if any values in flag_where are true,
and then reports on the corresponding items in flag_elements.

	Parameters

	
	flag_where (Pandas Series) – a boolean Pandas Series where True
represents a failed check

	flag_elements (Pandas Series) – a boolean Pandas Series listing
elements that are affected by True values in flag_where

	criteria (String) – a brief description of what elements are
being flagged and reported on

	Returns

	None

Examples

>>> v = Validation("element test")
>>> v.flag_elements(pd.Series([False, False]), pd.Series(["A", "B"]), "red flag(s)")
>>> v.flag_elements(pd.Series([False, True]), pd.Series(["A", "B"]), "blue flag(s)")
>>> v.report(verbose=4)
Validating element test . . .
<BLANKLINE>
 CHECKS PASSED
[X] No red flag(s) in element test detected.
<BLANKLINE>
 WARNINGS
[?] 1 blue flag(s) in element test detected. These ('B') will be treated as NA.

	
flag_rows(flag_where, flag_criteria, flag_action='', flag_tier=<class 'validation.Warn'>)

	Adds a validation check seeing if any values in flag_where are true,
where fail_check is of type flag_tier. Note that rows are reported
counting from 0.

	Parameters

	
	flag_where (Pandas Series) – a boolean Pandas Series where True
represents a failed check.

	flag_criteria (str) – a noun clause describing the criteria for an
item to be flagged in flag_where

	flag_action (str) – string describing the action to be taken if
an item is flagged. Defaults to “”.

	flag_tier (VCheck) – should be either Suggest, Warn, or Err, is
the seriousness of the failed check.

	Returns

	None

Examples

>>> v = Validation()
>>> v.flag_rows(pd.Series([False, False]), flag_criteria="true values")
>>> v.flag_rows(pd.Series([False, True]), flag_criteria="true values")
>>> v.report(verbose=4)
Validating . . .
<BLANKLINE>
CHECKS PASSED
[X] No true values detected.
<BLANKLINE>
WARNINGS
[?] 1 true values detected in row(s) #1.

	
is_valid()

	Checks to see if instance is valid.

	Parameters

	None –

	Returns

	
	True if is valid (has no errors in vchecks) and False if

	instance has errors or where vchecks is empty.

	Return type

	bool

Examples

>>> Validation().is_valid()
False
>>> v = Validation()
>>> v.must_contain(pd.Series(["A", "B"]), pd.Series(["B"]))
>>> v.is_valid()
True
>>> v.must_contain(pd.Series(["A", "B"]), pd.Series(["C"]))
>>> v.is_valid()
False

	
must_contain(given, required, passing_msg='', fail=<class 'validation.Err'>)

	adds a validation check where given must contain every item in
required at least once to pass, and fail_check is fail,
(fails validation).

	Parameters

	
	given (Pandas Series) – the items representing input given

	required (Pandas Series) – the items required to be in given

	passing_msg (str) – Message to return if all items in expected are
listed in given. Defaults to “”.

	fail (VCheck) – the outcome if the check fails. Default is Err.

	impact (Pandas Series) – a corresponding series to required that
represents the affected information when

	Returns

	None

Examples

>>> v = Validation()
>>> v.must_contain(pd.Series(["a","b","c"], name="example input"), pd.Series(["a","b"], name="example requirement(s)"), "all included")
>>> v.must_contain(pd.Series(["a","b","c"], name="example input"), pd.Series(["a","b","d"], name="example requirement(s)"))
>>> v.report(verbose=4)
Validating . . .
<BLANKLINE>
 CHECKS PASSED
[X] all included
<BLANKLINE>
 ERRORS
 [!] 1 (33.3%) example requirement(s) ('d') were not found in example input. Their values will be NA.

	
no_duplicates(my_series)

	adds a validation check as Err if any items in my_series are
duplicates. Intended to alert users of issues where there are duplicate
columns before an exception is raised.

my_series (Pandas Series): series where there should not be dupes

	Returns:

	None

	
no_extraneous(given, relevant, value_type)

	adds a validation check where all values in given should also be
in relevant to pass. fail_check is Warn

	Parameters

	
	given (Pandas Series) – the items representing input given

	relevant (Pandas Series) – all items in given that will be used

	value_type (str) – string describing the kind of noun that is
listed in given

	Returns

	None

Examples

>>> v = Validation()
>>> v.no_extraneous(pd.Series(["a","b"], name="example input"), pd.Series(["a","b","c"], name="relevant value(s)"), "example")
>>> v.no_extraneous(pd.Series(["a","b","c"], name="example input"), pd.Series(["a","d"], name="relevant value(s)"), "example")
>>> v.report(verbose=4)
Validating . . .
<BLANKLINE>
CHECKS PASSED
[X] No extraneous example found in example input.
<BLANKLINE>
ERRORS
[!] 2 extraneous example(s) found in example input
('b', and 'c') Extraneous example(s) will be ommitted.

	
report(verbose=2)

	Prints the checks in the vchecks attribute

	Parameters

	verbose (int) – Parameter controlling how much to print by filtering
for the level in each vchecks row to be less than or equal to
verbose. Defaults to 2 (print only converted Warn and Err
checks)

	Returns

	None

Examples

>>> v = Validation("Testing Tests")
>>> v._add_condition(pd.Series([False, False, False]), Passing("Passed test"), Err("Failed test"))
>>> v._add_condition(pd.Series([False, False, False]), Passing("Passed test 2"), Err("Failed test"))
>>> v._add_condition(pd.Series([False, False, True]), Passing("Passed test"), Err("Error test"))
>>> v._add_condition(pd.Series([False, False, True]), Passing("Passed test"), Warn("Warn test"))
>>> v._add_condition(pd.Series([False, False, True]), Passing(""), Suggest("Suggest test"))
>>> v.report(verbose=1)
Validating Testing Tests . . .
<BLANKLINE>
 ERRORS
[!] Error test
>>> v.report(verbose=4)
Validating Testing Tests . . .
<BLANKLINE>
 CHECKS PASSED
[X] Passed test
[X] Passed test 2
<BLANKLINE>
 ERRORS
[!] Error test
<BLANKLINE>
 SUGGESTIONS
[i] Suggest test
<BLANKLINE>
 WARNINGS
[?] Warn test

	
class validation.Warn(message)

	Bases: validation.VCheck

VCheck subclass representing a problem in data validation that
can be fixed in place, but would otherwise prevent validation.

Examples

>>> Warn("This is a data validation warning").expand()
Tier Warning
Bullet [?]
Level 2
Title WARNINGS
Message This is a data validation warning
dtype: object

	
bullet()

	abstract property, must be overriden.
Should be a str, representing a bullet point

	
level()

	abstract property, must be overriden.
Should be int ,representing VCheck tier

	
tier()

	abstract property, must be overriden.
Should be str, representing name of VCheck tier

	
title()

	abstract property, must be overriden.
Should be str, representing title of VCheck type

	
validation.report_row(flag_where)

	A helper method to return an english explanation of what rows have been
flagged with a failed validation check.

	Parameters

	flag_where (Pandas Series) – boolean Pandas Series representing failed
validation checks.

	Returns

	a string reporting the index of the flagged rows

	Return type

	str

Examples

>>> report_row(pd.Series([True, True, False, True, False]))
'#0, #1, and #3'

mappings module

Defines MapCondition class and its subclasses, each represent a single condition
that uses a relationship to transform raw data into a boolean column while
preserving the NA values.

	
class mappings.BetweenCondition(condition_row)

	Bases: mappings.NumMapCondition

Subclass of NumMapCondition that overrides __init__ and .check() methods
for the between relationship

	Variables

	
	low (float) – a float representing the lowest acceptable value (incl)

	high (float) – a float representing the highest acceptable value (incl)

	
possible_values()

	generate a non-exhaustive list of possible values implied by the
condition

Args: None

	Returns

	a list of integers between self.low - 1 and self.high + 2

	Return type

	list

Examples

>>> BetweenCondition({"Condition" : "3 to 5", "New Column Name" : "test new column name", "Relationship" : "between", "Prerequisite" : None, "Source Column ID" : "source_test_2"}).possible_values()
[2.0, 3.0, 4.0, 5.0, 6.0]

	
class mappings.ContainsCondition(condition_row)

	Bases: mappings.StrMapCondition

Subclass of StrMapCondition that overrides ._run_check() method for the
contains relationship

	
class mappings.MapCondition(condition_row)

	Bases: abc.ABC

Abstract class representing a single mapped condition in the mapping
data, which gives instructions to transform the raw input data into the
form needed for a VA instrument. The main configuration class is composed
of these.

	Variables

	
	name (str) – the name of the new column to be created

	relationship (str) – the relationship of the input data to the condition
Should be one of “ge” (greater than or equal to), “gt”
(greater than), “le” (less than or equal to), “lt” (less than),
“eq” (equal to), “ne” (not equal to),
“contains” (if string contains) or “between”
(between the two numbers, inclusive).

	preq_column (str or None) – name of the pre-requisite column if it exists,
or None if no pre-requisite

	source (str) – the name of the column to be checked

	
check(prepared_data)

	Checks the condition against dataframe. Do not check NAs, just add
them back afterward.

	Parameters

	prepared_data (Pandas DataFrame) – a dataframe containing a created
column with the name specified in self.source_dtype

	Returns

	returns a boolean array where the condition is met (as float)

	Return type

	Array

Examples

>>> test_df = pd.DataFrame({"source_test_str": ["test condition", "test condition 2", np.nan], "source_test_num": [4, 5, np.nan]})
>>> StrMapCondition({"Condition" : "test condition", "New Column Name" : "test new column name", "Relationship" : "eq", "Prerequisite" : None, "Source Column ID" : "source_test"}).check(test_df)
array([1., 0., nan])

>>> NumMapCondition({"Condition" : 4.5, "New Column Name" : "test new column name", "Relationship" : "ge", "Prerequisite" : None, "Source Column ID" : "source_test"}).check(test_df)
array([0., 1., nan])

	
check_prereq(transformed_data)

	checks for pre-req column status; if there is no pre-req, returns
true, else looks up values of pre-req column from transformed_data

	Parameters

	transformed_data (Pandas DataFrame) – the new dataframe
being created, which contains any pre-req columns

	Returns

	
	representing whether pre-req is

	satisfied

	Return type

	boolean or boolean pd.series

Examples

>>> test_df = pd.DataFrame({"preq_one": np.repeat(True,5), "preq_two": np.repeat(False, 5)})

If there is no pre-req, simply returns True (1) Pandas can
interpret this in boolean indexing.

>>> NumMapCondition({"Condition" : 4.5, "New Column Name" : "test new column name", "Relationship" : "ge", "Prerequisite" : None, "Source Column ID" : "source_test"}).check_prereq(test_df)
1

If there is a pre-req, then returns the value of transformed_data
with that column.

>>> NumMapCondition({"Condition" : 4.5, "New Column Name" : "test new column name", "Relationship" : "ge", "Prerequisite" : "preq_one", "Source Column ID" : "source_test"}).check_prereq(test_df)
0 True
1 True
2 True
3 True
4 True
Name: preq_one, dtype: bool

>>> NumMapCondition({"Condition" : 4.5, "New Column Name" : "test new column name", "Relationship" : "ge", "Prerequisite" : "preq_two", "Source Column ID" : "source_test"}).check_prereq(test_df)
0 False
1 False
2 False
3 False
4 False
Name: preq_two, dtype: bool

	
describe()

	just a wrapper for the __str__ function

	
factory(condition='')

	static class factory method, which determines which subclass to
return

	Parameters

	
	relationship (str) – a relationship in (gt, ge, lt, le, ne, eq,
contains, between) that represents a comparison to be
made to the raw data

	condition (str or int) – the condition being matched. if
relationship is ambiguous, then this determins if condition
is numerical or string. Defaults to empty string.

	Returns

	returns specific subclass that corresponds to the
correct relationship

	Return type

	MapCondition

Examples

>>> MapCondition.factory("ge") #doctest: +ELLIPSIS
<class '...NumMapCondition'>

>>> MapCondition.factory("eq", 0) #doctest: +ELLIPSIS
<class '...NumMapCondition'>

>>> MapCondition.factory("eq") #doctest: +ELLIPSIS
<class '...StrMapCondition'>

>>> MapCondition.factory("contains") #doctest: +ELLIPSIS
<class '...ContainsCondition'>

>>> MapCondition.factory("between") #doctest: +ELLIPSIS
<class '...BetweenCondition'>

>>> MapCondition.factory("eqq") #doctest: +ELLIPSIS
Traceback (most recent call last):
AssertionError: No defined Condition class for eqq type

	
possible_values

	abstract method stub
generate a non-exhaustive list possible values implied by condition

	
prepare_data(raw_data)

	prepares raw_data by ensuring dtypes are correct for each comparison

	Parameters

	raw_data (dataframe) – a data frame containing raw data, including
the column given in self.source_name.

	Returns

	the column in raw_data named in self.source_name, with the attribute self.prep_func applied to it.

	Return type

	Pandas Series

	
class mappings.NumMapCondition(condition_row, cast_cond=True)

	Bases: mappings.MapCondition

class representing a numerical condition, inherits from MapCondition

	Variables

	
	source_dtype (str) – a copy of the instance attribute self.source_name
with “_num” appended, to represent the expected dtype

	prep_func (function) – class attr, a function to apply before making a
numerical-based comparison. pd.to_numeric() coerces non-number data
to NaN.

	
possible_values()

	generate a non-exhaustive list of possible values implied by
condition

Args: None

	Returns

	
	list containing range of possible values. If a greater than

	relationship, the list will include ints from self.condition
+ 1 to self.condition*2. If a less than relationship, it will
include values from 0 to self.condition. If the condition
includes “equal to”, then self.condition will also be included.

	Return type

	list

Examples

>>> NumMapCondition({"Condition" : 3, "New Column Name" : "test new name", "Relationship" : "ge", "Prerequisite" : None, "Source Column ID" : "source_test"}).possible_values()
[4.0, 5.0, 3.0]
>>> NumMapCondition({"Condition" : 3, "New Column Name" : "test new name", "Relationship" : "lt", "Prerequisite" : None, "Source Column ID" : "source_test"}).possible_values()
[0.0, 1.0, 2.0]

	
class mappings.StrMapCondition(condition_row)

	Bases: mappings.MapCondition

class representing a str condition, inherits from MapCondition

	Variables

	
	source_dtype (str) – instance attribute, a copy of the instance
attribute self.source_name with “_str” appended,
to represent the expected dtype

	prep_func (function) – class attribute, a function to apply before
making a string-based comparison. It preserves null values but
changes all else to str.

	
possible_values()

	generate a non-exhaustive list possible values implied by condition

Args: None

	Returns

	
	list containing 4 possible values (empty string, NA, None,

	and the self.condition attribute) that might be expected by
this condition

	Return type

	list

Examples

>>> StrMapCondition({"Condition" : "test condition", "New Column Name" : "test new column name", "Relationship" : "eq", "Prerequisite" : None, "Source Column ID" : "source_test"}).possible_values()
['', nan, None, 'test condition', 'yes', 'no', 'dk', 'ref']

 Python Module Index

 c |
 m |
 t |
 u |
 v

 		 	

 		
 c	

 	
 	
 configuration	

 		 	

 		
 m	

 	
 	
 mappings	

 		 	

 		
 t	

 	
 	
 transform	

 		 	

 		
 u	

 	
 	
 utils	

 		 	

 		
 v	

 	
 	
 validation	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	affected_by_absence() (validation.Validation method)

 	
 	all_valid() (validation.Validation method)

B

 	
 	BetweenCondition (class in mappings)

 	bullet (validation.VCheck attribute)

 	bullet() (validation.Err method)

 	(validation.Passing method)

 	(validation.Suggest method)

 	(validation.Warn method)

C

 	
 	check() (mappings.MapCondition method)

 	check_na() (validation.Validation method)

 	check_prereq() (mappings.MapCondition method)

 	
 	Configuration (class in configuration)

 	configuration (module)

 	ContainsCondition (class in mappings)

 	CrossVA (class in configuration)

D

 	
 	describe() (configuration.Configuration method)

 	(mappings.MapCondition method)

 	
 	detect_format() (in module utils)

E

 	
 	english_relationship() (in module utils)

 	
 	Err (class in validation)

 	expand() (validation.VCheck method)

F

 	
 	factory() (mappings.MapCondition method)

 	fix_alnum() (validation.Validation method)

 	fix_lowcase() (validation.Validation method)

 	fix_upcase() (validation.Validation method)

 	
 	fix_whitespace() (validation.Validation method)

 	flag_elements() (validation.Validation method)

 	flag_rows() (validation.Validation method)

 	flexible_read() (in module utils)

I

 	
 	is_valid() (validation.Validation method)

L

 	
 	level (validation.VCheck attribute)

 	level() (validation.Err method)

 	(validation.Passing method)

 	(validation.Suggest method)

 	(validation.Warn method)

 	
 	list_conditions() (configuration.Configuration method)

M

 	
 	main_columns (configuration.Configuration attribute)

 	MapCondition (class in mappings)

 	
 	mappings (module)

 	must_contain() (validation.Validation method)

N

 	
 	no_duplicates() (validation.Validation method)

 	
 	no_extraneous() (validation.Validation method)

 	NumMapCondition (class in mappings)

P

 	
 	Passing (class in validation)

 	possible_values (mappings.MapCondition attribute)

 	possible_values() (mappings.BetweenCondition method)

 	(mappings.NumMapCondition method)

 	(mappings.StrMapCondition method)

 	
 	prepare_data() (mappings.MapCondition method)

 	process() (configuration.CrossVA method)

R

 	
 	report() (validation.Validation method)

 	report_list() (in module utils)

 	
 	report_row() (in module validation)

 	required_columns (configuration.Configuration attribute)

S

 	
 	StrMapCondition (class in mappings)

 	
 	Suggest (class in validation)

T

 	
 	tier (validation.VCheck attribute)

 	tier() (validation.Err method)

 	(validation.Passing method)

 	(validation.Suggest method)

 	(validation.Warn method)

 	title (validation.VCheck attribute)

 	
 	title() (validation.Err method)

 	(validation.Passing method)

 	(validation.Suggest method)

 	(validation.Warn method)

 	transform (module)

 	transform() (in module transform)

U

 	
 	utils (module)

V

 	
 	valid_relationships (configuration.Configuration attribute)

 	validate() (configuration.Configuration method)

 	(configuration.CrossVA method)

 	
 	Validation (class in validation)

 	validation (module)

 	VCheck (class in validation)

W

 	
 	Warn (class in validation)

CrossVA

	configuration module

	mappings module

	transform module

	utils module

	validation module

utils module

Convenience functions for the CrossVA module, which help to provide a more
user-friendly experience with inputs and error messages across different files.

	
utils.detect_format(output_format, data)

	Detects the format of the input data, determining the closest match

	Parameters

	
	output_format (string) – The output format, needed for loading the configuration files to test each

	data (Pandas DataFrame) – The data being processed where we wish to determine the most likely format

	Returns

	the best matching format for the input data

	Return type

	str

Examples:
Can determine the format of a data file:
>>> detect_format(“InSilicoVA”, flexible_read(“resources/sample_data/2016WHO_mock_data_1.csv”))
‘2016WHOv141’

	
utils.english_relationship(rel)

	Returns abbreviated relationship as full english phrase.

	Parameters

	rel (str) – a string with the relationship being translated, e.g., “gt”

	Returns

	
	a string with the relationship as a longer english phrase e.g.,

	”greater than”. If relationship not defined in the dict english,
then this method returns rel without modification.

	Return type

	str

Raises: TODO

	Examples

	>>> english_relationship("gt")
'is greater than'

>>> english_relationship("unknown")
'unknown'

	
utils.flexible_read(path_or_df)

	Takes either a path or a Pandas DataFrame, if path, read in as a pandas
dataframe. Convenience method to add input flexibility for main transform
method.

	Parameters

	path_or_df (string or Pandas DataFrame) – Either a string representing
a path to the file containing the data, or a dataframe that has
already been read into Python.

	Returns

	
	either the data at the given path as read by pandas,

	or the DataFrame constructor used on the path_or_df argument

	Return type

	Pandas DataFrame

Examples:
Can return a dataframe from a string:
>>> flexible_read(“resources/sample_data/2016WHO_mock_data_1.csv”).iloc[:5,:5]

ID -Id10004 -Id10019 -Id10059 -Id10077

0 0 wet dk married dk
1 1 wet female NaN dk
2 2 dry male dk NaN
3 3 dk dk dk dk
4 4 dry NaN married dk

Or apply the pandas dataframe constructor to the input:
>>> flexible_read(np.arange(9).reshape(3,3))

0 1 2

0 0 1 2
1 3 4 5
2 6 7 8

	
utils.report_list(alist, limit=10, paren=True)

	Converts alist into a user-friendly string for clearer error messages.
Each element is reported single quotes and seperated by commas, with the
last element preceded by ” and “.
When limit is shorter than the list, cuts the list at the limit,
omits the ‘and’, and ends with ‘etc’ to indicate incompleteness.

	Parameters

	
	alist (list) – Description of parameter alist.

	limit (int) – The maximum number of items to report. If more than limit,
the list is reported without conjunction and ends with “etc.”
Defaults to 10.

	paren (boolean) – Encloses string in parentheses if true. Defaults to
True.

	Returns

	human-friendly sentence describing the items in alist

	Return type

	str

Examples
>>> report_list([“A”,”B”,”C”])
“(‘A’, ‘B’, and ‘C’)”

>>> report_list(["A","B","C"], limit=2)
"('A', 'B', etc)"

>>> report_list(["A","B","C"], limit=2, paren=False)
"'A', 'B', etc"

>>> report_list([])
''

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 CrossVA documentation

 		
 Configuration Files

 		
 transform function

 		
 configuration module

 		
 validation module

 		
 mappings module

_static/up.png

